Using problem-based learning during student placements to embed theory in practice

Gaynor Sadlo
University of Brighton, UK

Corresponding author:
Professor G. Sadlo, School of Health Professions, 49 Darley Rd, Eastbourne BN20 7UR, UK
Email: g.sadlo@brighton.ac.uk

Abstract
Practice placements, a prominent part of the education of health and social care professionals, are strongly validated by theories of adult learning. Being situated in authentic workplaces in contact with people in need, motivation to learn is strong. However, it is not always easy for students to realise the knowledge that practitioners are using in the setting, as it becomes tacit. Problem-based learning (PBL) is a form of student-centred university teaching deliberately structured to support development of students’ theoretical understanding, critical thinking, professional reasoning and team skills. PBL is recognised world-wide for its applicability to health and social science curricula, but to date its potential as a method to activate theoretical learning during placements has not been realised.

The aim of this masterclass is to inspire and encourage placement educators and students to use PBL as an effective, enjoyable way to structure knowledge development during placement. The outcomes of this paper include appreciation of the rationale and stages of the PBL cycle in a practice environment, and sufficient understanding about how PBL can be used to embed theory in practice to give it a try. Case studies and supervision sessions need to be adjusted a little to explicitly include a self-directed learning stage to develop students' knowledge, illustrated here through a case example. Students identify their own learning needs to guide their independent learning, maximising use of placement time. PBL in practice settings is a flexible approach, applicable to one-to-one situations, with pairs, groups (including inter-professional), and within work-based learning for staff development.

Keywords: problem-based learning, practice placements, implicit knowledge, explicit knowledge, evidence-based practice

Introduction
Practice placements for health and social care students have always been a highly valued and important component of their professional education (Baldry Currens & Coyle 2013, Gidman 2013). Placements immerse students in real-world situations, provide hands-on experience for skill development, offer immediate application of knowledge and professional
socialisation, qualities that enact theories of situated learning (Lave & Wenger 1991, Knowles et al. 2011). Through their own actions students come to realise the knowledge they need for future practice (Marshall & Cooper 2001). “The defining characteristic of work-based learning is that working and learning are coincident” (Boud 2001, p34).

Placements nevertheless need careful planning to identify their specific theoretical fields, to match learning to the student's level and to assess what has been achieved. This masterclass presents problem-based learning (PBL), as a particular, structured approach that reveals the theoretical requirements of a placement. PBL is an evidence-based educational process designed for campus learning but its processes match the needs of practical settings (Ehrenberg & Haggblom 2007). PBL can increase the effectiveness of placements by narrowing potential theory-practice gaps, and through some small but important adjustments to case study work, their self-managed learning periods and to mentoring meetings.

A major purpose of PBL in practice, as emphasised in the masterclass, is to reveal and imbed theory into the daily activities of the setting. The richness of learning in placement environments can be threatened by today's busy practice conditions, in the face of many pressing service needs, such as higher caseloads and fewer treatment sessions (Gordon et al. 2000). This can reduce the time to build bridges between practical and academic knowledge.

Research into expert knowledge indicates that a specific complexity of practice learning is in force during encounters between educators and students (Biggs 1999), which PBL can address. Each role apparently uses different forms of knowledge (Hanberg & Brown 2006). Students are more familiar with book knowledge – also called factual, descriptive or propositional knowledge (knowing that, knowing a fact), whereas practitioners, as experts, mostly use procedural knowledge (knowing how) and functioning knowledge (performance of an understanding) (Biggs 1999). Practitioners can genuinely find it difficult to explain work decisions or to express the theoretical basis of their actions to students, because expert knowledge becomes so tacit, or embodied; it is used so often that it guides professional action in an unconscious manner (Eraut 2007). Educators' knowledge becomes implicit after years of application, and it then is more difficult to access consciously, that is, explicitly (Dietrich 2007).

These different types of knowledge have a neurological basis - propositional and procedural knowledge are classified respectively as explicit (frontal lobe) and implicit (other cortices and motor pathways) (Dietrich 2007, Fugill 2011). The relevant issue is that implicit knowledge is by its nature non-verbalisable. When teaching a new practice skill “words make a relatively small contribution” (Fugill 2011, p3). This relates to a special property of PBL – through structured discussion of the case it seems to act like a conduit, guiding students through the different stages of thinking or reasoning, helping reveal the implicit knowledge needed, until it becomes gradually more explicit (Biggs 1999). PBL involves specific identification of the multi-subject knowledge required to work with a particular case while enhancing the integration of the different forms of knowledge within practice environments (Biggs 1999). In this masterclass, practice educators and students will learn how to apply PBL in practice settings to enhance the learning of theory within practice.

PBL has a long heritage. It has been described as “the most influential innovation in medical education during the last forty years” (Wood 2008, p336). “Problem-based learning is defined as the learning that occurs through the process of trying to solve or manage a real-life problem” (Barrows 1979, p39).

Below, the general background of PBL shows that its educational rationale evolved from practice-based learning (Barrett & Moore 2011). This is followed by an illustration of the method of practice-based PBL. The discussion section considers its potential and
recommends the application of PBL within workplaces generally. The conclusion summarises the main points to be gained from this masterclass, highlighting future possibilities for PBL in student practice settings.

Background literature: PBL

BL was developed by clinical teachers in medicine in the 1960s in Canada (Barrows & Tamblyn 1989, Sadlo 1997, Savin-Baden 2003) to make university courses more meaningful. The key was to focus curricula entirely on real-world cases (Barrows 1980). PBL campus curricula consist of the presentation of a series of professionally-relevant situations designed to activate problem-solving and critical reasoning, but meanwhile inspiring the learning of applicable subjects such as anatomy or sociology by setting them in context. PBL is validated by research into how students learn (Schmidt & Moust 2000, Ramsden 2003, Biggs 2003), and it has spread globally particularly in health and engineering (Dochy et al. 2003, Sevilla 2012).

PBL and placements thus share their educational rationale (Dewey 1938, Barrows 1979, Spencer 2003, Cross et al. 2006). Real-world learning-through-doing is regarded as the natural way human beings have learnt throughout history (Barrows 1980, Wilcock 2006). From an evolutionary perspective being confronted with real-life problems leads to adaptation to different environments (Wilcock 2006). Problems activate thirst for new knowledge, and have led to an explosive growth in science and technology (Firestein 2012). Placements enact Knowles' (1984) humanist theories of learning, drawing on Maslow's motivation theories (Maslow 1954). They match Knowles et al. (2005) theories of adult learning, such as meaningful purpose. Interacting with real problems fosters reflection-in-action (Schon 1987). Carl Rogers (Rogers & Freiberg 1993) showed how real environments are vital to students' learning, while to Lave & Wenger (1991) high-quality situated learning occurs best within communities of practice, such as work settings.

Problems in real contexts re-ignite ancient educational approaches (Savin-Baden 2003). Five thousand years ago the philosophical writings ‘The Upanishads’ recommended learning through discussion of everyday problems (Mascaro 1965). Socrates taught so powerfully through questions that arose from everyday living, that he was executed for being too influential (de Botton 2001, Wang et al. 2008). In the 20th Century, Dewey argued that children learn more in a kitchen than a classroom (Dewey 1938), while Piage, Montesori and Steiner developed progressive and practical educational methods through real-life engagement rather than theoretical, teacher-led desk-based lessons (Sadlo 2011). Robinson & Aronica (2010) showed how passion for learning can be destroyed in classrooms, further supporting the value of real-world placements.

Learning in situ and through solving troubling situations is justified through research evidence. Neuroscience reveals that learning new professional skills demands “effortful rehearsal” in context (Dietrich 2007, p155) if they are to be gained and retained. Situated learning provides complex social, cognitive and emotional experiences (Cope et al. 2000). Research into apprenticeships demonstrates that direct work activities merge understanding and skills (Lucas et al. 2012). Workplaces are proved to be the most effective environments for stimulating professional development, and for offering continual, life-long learning opportunities (Boud 2001). For instance, a phenomenological study revealed how role-emerging placements enhance students' personal efficacy and their professional identity (Clarke 2012). In another qualitative study, student nurses identified the benefits of practice placements as responsibility, independence and direct feedback (Lofmark & Wikblad 2000). In PBL, practice is viewed as the source of knowledge, whereas in traditional academic programmes science knowledge is seen as being ‘applied’ to practice. A study of nursing students found that PBL in a practice setting built the skill of seeing the theory
within everyday practice (Chikotas 2009), which is the first stage of being able to perceive gaps in one’s own knowledge (Firestein 2012). An excitement towards gaining new understanding is a prerequisite to meaningful learning (Wang et al. 2008). The supportive culture of PBL enables students to acknowledge what they do not know, to activate further learning (Dangerfield et al. 2007).

PBL has been adopted in many health and social-care professions on campus (Reeves et al. 2004): in medical education (Gordon et al. 2000), social work (Wong & Lam 2007), dentistry (Yiu et al. 2011), physiotherapy (Ekstein & Slabbert 2001), occupational therapy (Sadlo et al. 1994, Royeen 1995), speech and language therapy (Visconti 2008) and radiology (Thurley & Dennick 2008). However, it is mainly within nursing that using PBL in practice settings has received some attention, the findings of which are predominately positive (Tiwari et al. 2006, Ehrenberg & Haggblom 2007). Chikotas (2009) conducted a phenomenological study of nurses from PBL university courses who then used it during practice, finding that PBL motivated learning, encouraged teamwork, and facilitated holistic practice.

Theoretically, PBL encourages deep approaches to learning, through meaning, challenge and collaboration, creating an ideal balance between teacher-led, student-led and independent learning activities (Biggs 2003). Over the last half-century there have been hundreds of research papers showing the effects of campus-based PBL; there are strong positive findings for the transferable skills, enhanced approaches to learning, and the development of practice skills. However, some authors claim that it has yet to be firmly established that PBL is educationally superior overall; for example, in a meta-review of controlled evaluations of PBL therapy courses, O’Donoghue et al. (2011) found no proven evidence that it increased knowledge, improved practice performance, or enhanced student satisfaction. They found a weak effect for enhanced approaches to learning, whereas Sadlo (1997) discovered a close effect - the more wholly PBL is used, the higher the quality of learning. Students who attended a ‘fully’ PBL programme spent a lot less time focusing on learning just for exams, unlike students from traditional programmes.

Thus, both practice placements and campus-based PBL can promote quality learning experiences for students. Bringing them together seems to offer further potential. However, within the prolific PBL literature there is a lack of papers providing practical information to educators and students regarding how to actually adjust PBL to placement settings. The purpose of this masterclass is to begin to fill that gap.

Method: how educators and students can implement PBL during practice placements

All parties clarify at the beginning how the placement will apply PBL. The best place to begin, when using PBL with one student, is to use a selected case study that becomes a focus to guide the learning for several weeks, or even the whole placement, depending on the desired depth. It needs to include time for critical evaluation of the learning, and evidence of chosen practice. The PBL case discussion – called the PBL tutorial – is purposefully used to structure some of a student’s mentoring time and the achievement of some of the placement goals in general, and for embedding the theory and practice links in particular. The process is as follows.

- The educator or student identifies a person from their caseload, who becomes the PBL case study.
- Working together in a discursive way, the student identifies their learning needs, following the PBL format below – designed to reveal the range of subject knowledge
that is required to work with a person in a particular setting, making the implicit knowledge explicit. Questions are formed.

- The student seeks out, learns, reviews, or revises this knowledge during their study time and in spare moments within the placement. This new knowledge, applied to the case, is shared and discussed with the educator during their next (hopefully weekly) meeting.

The PBL format structures the theoretical aspect of a placement, making it more overt, but skill development can also be included within the learning needs. It constantly activates professional reasoning and provides and guides tasks for students throughout the placement. Students become more self-reliant, which may relieve some of the perceived responsibility on educators to ‘deliver’ a lot of teaching to students.

The four main aims of PBL guide the learning actions:

1. to expand and deepen knowledge;
2. to facilitate clinical/professional reasoning;
3. to develop self-directed learning skills;
4. to promote teamwork skills (especially communication, self awareness and compassion).

In essence, PBL requires some small but important re-structuring of supervision meetings, guiding the knowledge to be learnt. About thirty minutes is recommended for the PBL activity within any session. PBL becomes rather like a Model for Enhanced Clinical Supervision (Ehrenberg & Haggbloom 2007).

PBL provides two nested processes:

1. each tutorial follows a strict sequence of case analysis, following the reasoning of the particular profession;
2. each tutorial is part of the PBL cycle, each meeting having a specific purpose.

A cycle has a minimum of two tutorials – one to initially discuss the case from a theoretical perspective, ending in agreed learning objectives, and another where the student specifically reports the learning back to the educator and discusses the case again in this light. At least four meetings are recommended for each case, giving more time for depth of learning. Table 1 outlines the activities of the PBL tutorials.

Between each tutorial the student engages in self-directed learning – searching, finding, selecting, reading, understanding, and preparing to share this new understanding or evidence. This self-regulated work may take place during any period on placement when there are no relevant patients or clients with whom to work, or when the supervisor needs to be otherwise engaged, to maximise the learning potential of the placement and elaborate the learning (Gordon et al. 2000). The student prepares to feed back the new learning to the educator during the next session.

This process is now illustrated through an example.

A case example

The following brief outline of a situation encountered by a healthcare student during a hospital placement is used here to give a practical illustration of how PBL can be used on placement.

Outline

Marjorie Brown, 79, has been admitted to the rehabilitation unit in a regional hospital three days ago following a stroke four weeks ago. She is unable to use
her right hand nor can she stand, and her speech is rather incomprehensible. Her husband visits her daily.

Table 1 Activities of the PBL tutorials.

<table>
<thead>
<tr>
<th>First tutorial</th>
<th>Turn focus of thoughts onto the chosen person/situation.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discuss first reactions to the situation (acknowledging emotions too).</td>
</tr>
<tr>
<td></td>
<td>Identify the basic information we already have about the person (age, social situation, diagnosis).</td>
</tr>
<tr>
<td></td>
<td>Identify what further factual information is needed about the person, for example what her medication might be, what type of home she lives in, previous medical history, family status).</td>
</tr>
<tr>
<td></td>
<td>Try to define in words the actual problem faced by the person from the perspective of the particular profession.</td>
</tr>
<tr>
<td></td>
<td>Brainstorm causes of the problems, current reasoning, ideas, and any personal experience of the matter (Barrett & Moore 2011).</td>
</tr>
<tr>
<td></td>
<td>Consider how the (particular) profession would try to manage this situation, that is, already express thoughts about the possible intervention.</td>
</tr>
<tr>
<td></td>
<td>THEN identify what new knowledge, or revision is required to inform and manage the problem. Refine these, turn them into a list of questions that need answering.</td>
</tr>
<tr>
<td></td>
<td>Prioritise these questions and choose one or two for independent study during the following week.</td>
</tr>
<tr>
<td></td>
<td>Consider where/how to find this information.</td>
</tr>
<tr>
<td>Second tutorial</td>
<td>Student shares and explains what s/he has learned, with the educator.</td>
</tr>
<tr>
<td></td>
<td>Student critiques the knowledge source, eg is it evidence-based? Where was it found?</td>
</tr>
<tr>
<td></td>
<td>Both consider the relevance of this knowledge to the case management, through discussion.</td>
</tr>
<tr>
<td></td>
<td>Discussion provokes more questions, and another round of self-directed learning occurs during the next week to answer these.</td>
</tr>
<tr>
<td>Third/fourth tutorial</td>
<td>Same as above, with knowledge deepening throughout, including basic sciences such as psychology, sociology.</td>
</tr>
<tr>
<td>(repeated)</td>
<td>Student encouraged to struggle to explain difficult concepts, and may write concept maps or diagrams to reveal new understanding.</td>
</tr>
<tr>
<td></td>
<td>Seek research papers for the evidence of practice in the setting.</td>
</tr>
<tr>
<td>Final tutorial</td>
<td>Student shows plans to manage the situation, in light of the recent learning.</td>
</tr>
<tr>
<td></td>
<td>Decisions are justified through an explanation of the new theory or information that has been acquired, including the evidence-base for the chosen intervention.</td>
</tr>
<tr>
<td></td>
<td>A typical ending might be an assessment plan, or management/treatment programme for the client/patient.</td>
</tr>
<tr>
<td></td>
<td>Student considers, identifies and reflects on growth in learning.</td>
</tr>
</tbody>
</table>

Table 2 indicates the format of the reasoning structure adopted during the tutorials. The columns structure the student’s reasoning. The student writes thoughts and ideas down (ideally on a whiteboard or flipchart) using the four columns format, or, concept maps may be more fun, using the column headings as guides. The prompts are used in sequence, or
as ideas occur. Here Mrs Brown’s situation is used as if by a novice occupational therapy student during a placement in first year.

The list of questions, which need to embrace the full range of academic subjects, can be almost endless, and need to be prioritised and then gradually worked through over the weeks of the placement. They do not all need to be listed like this during the first meeting, but can evolve during the subsequent weeks. The prioritised questions form the basis for self-directed study, integrating the various diverse subjects, structuring the placement learning, and making the knowledge that is usually implicit, more explicit.

Putting PBL learning into the heart of mentoring meetings should reveal the specific theoretical (implicit) knowledge that any case study embodies activating learning. PBL is a thinking process that can be used anytime, anywhere, in any workplace, and even within everyday life, to stimulate learning and reasoning. It can enhance supervision through enabling an educator to see how a student is currently reasoning, to know more finely how to guide the developing understanding, and to provide a more accurate assessment of the student’s learning.

Discussion

This masterclass proposes that the educational advantages of practice placements can be even further enhanced through merging it with PBL approaches. All health and social care stakeholders realise that practice settings are key to the education of high-quality practitioners, and PBL can maximise theoretical learning during supervision and during study time. The value of real-world learning-by-doing has been appreciated throughout human history, and is supported by recent pedagogical research and by the latest neuroscience.

PBL is relevant to the nature of expertise, which uses implicit knowledge, a potential barrier to students’ appreciation of the information used in daily practice (Dietrich 2007). PBL provokes clinical reasoning during every tutorial discussion, which helps students to recognize what needs to be revised from campus studies and what needs to be learnt during placement. Further advantages are the development of transferable skills, such as critical reasoning, self-management of learning, communication and collaborative behaviour (Dangerfield et al. 2007).

Although the structure of the tutorials needs to remain firm, having been developed over many decades, PBL offers flexibility across different settings, professions, levels, and numbers of students. It can be used with all students, whether or not they attend campus-based PBL and marries well with 1:1 placements, or even better for 2:1 or more students because peer learning enhances its productivity (Martin & Edwards 1998). Uni-professional or multi-professional groups can use PBL as an effective tool to share their special reasoning, knowledge, and roles for the same client (Donaldson & Carter 2013) PBL offers an ideal format for inter-professional learning in practice settings. It can easily structure continual professional development for evidence-based practice for staff teams, creating a workplace university (see http://eisneramper.com/A-Workplace-University.aspx).

Case studies, already a popular way to build theory and reasoning during practice placements, can be enriched through PBL techniques. Two nested structures enable students to methodically discover the theory and skills that they need for their active independent study and peer teaching. PBL is recommended by major organisations such as the World Health Organisation (1991) for its capacity to develop collaborative team skills and self-regulated learning, both essential elements of contemporary practice when knowledge changes so rapidly.
Table 2 How to use Problem-based learning to structure thinking within one case study (occupational therapy example) (after Barrows 1980).

(See text for Table 2, which is not provided in this image.)
Research into the effectiveness of PBL is fraught with complexities, not least by the great variety of interpretations of PBL. Too few studies report how the PBL was played out, which is of course crucial to its outcomes. Like other person-centred interventions in health and social care, the heterogeneity of its practice impedes high-quality comparative research. Another issue that reduces the credibility of some research in this field is that traditional measures are used, such as results of conventional examinations of factual knowledge. PBL students are unfamiliar with such tests because subjects are always tested in the context of real-world problems. Most research identifies that there is a strong need for more PBL research, although ‘fully dissociating the findings associated with PBL with those attributable to other influential factors is nearly impossible’ (O’Donoghue et al. 2011, p69). One study found that a small proportion of graduates felt that PBL did not equip them with sufficient knowledge of practice techniques (Reeves et al. 2004). However, qualitative research approaches offer considerable scope in understanding the experiential effects of PBL (Reeves et al. 2004).

This masterclass has demonstrated that PBL can fulfil some of the identified need for more strategic planning of placements in the light of so many complexities, pressures and constraints in contemporary practice (Gordon et al. 2000). Collaboration and support for practice educators needs to be improved (Beckman & Lee 2009). PBL offers a modification to the usual case-based learning to foster the identification of the specific theoretical knowledge that a particular placement inspires. Meanwhile, it increases student autonomy.

Table 2 (Continued)

<table>
<thead>
<tr>
<th>What area of the brain has been affected?</th>
<th>What resources are available in communities for families, from stroke charities?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What interventions would I choose?</td>
<td></td>
</tr>
<tr>
<td>How is her husband’s health?</td>
<td>(liaise with multi-professional team)</td>
</tr>
<tr>
<td>What is their usual lifestyle?</td>
<td>- initial interview to gain rapport, gain her perspective</td>
</tr>
<tr>
<td>How are her personal care activities being managed at the moment?</td>
<td>- full assessment of ADLs, including bathroom and kitchen</td>
</tr>
<tr>
<td>What is her house like, does it have steps?</td>
<td>- home visit to understand her environmental assets and modifications</td>
</tr>
<tr>
<td>Does she have children?</td>
<td>- dressing practice?</td>
</tr>
<tr>
<td>What are her interests?</td>
<td>- cooking?</td>
</tr>
<tr>
<td>is there a local Stroke Association?</td>
<td></td>
</tr>
</tbody>
</table>

...etc

© 2014 D. Clouder, J. Thistlethwaite and V. Cross, The Higher Education Academy

PBLH, Vol 2, Issue 1 (January 2014)
doi:10.11120/pblh.2014.00029
on placement and activates personal responsibility for learning, essential traits for life-long learning. This reduces dependence on supervisors as deliverers of knowledge, while enabling students to bring recent knowledge to the setting. Indeed, the rather strict PBL process – a bespoke approach to each profession’s critical reasoning processes – reveals the need for most recent knowledge and evidence-base. This can found by the student to be shared with practice placement educators and their teams. Students have access to academic knowledge and can contribute explicit knowledge to that which is implicit within the community of practice, making students’ contribution to practice placements more clearly visible. Verbal expression of new understanding reinforces learning through elaboration (King 1992), while teaching has proven advantages (Boud et al. 2001). Practice knowledge may be deepened for the practice community, but this stage also exposes how much else there is to learn. Assessment of knowledge during placements might also be more overtly and accurately graded.

PBL meets the needs of contemporary practice in several ways. Recent emphasis on the development of compassion in care in the UK (Donaldson & Carter 2013) adds relevance to exploring emotional reactions to the person in the case study, but this has always been the first stage of a problem-based tutorial (Barrows 1980). Given the strong pedagogical justifications shared by both practice placements and PBL, PBL can capitalise on a placement’s high capacity for enhancing learning through conceptualising, designing, supporting and promoting theory-practice links during workplace experiences.

Conclusion

After nearly fifty years as a campus-based approach to learning, PBL has potential to be used within practice placements, especially to structure the learning of theory relevant to the particular practice. This masterclass has outlined how the PBL process may be used by students and educators in workplace settings, using a modified case study approach. It does not involve radical changes to current methods. This paper has demonstrated that PBL involves a special way of structuring thinking, the purpose of which is to develop a student’s clinical reasoning, in accordance with the knowledge of a particular profession. Knowledge can be fine-turned to underpin the understanding of a particular practice. Having identified a case-study, a student discusses it in the PBL way with their educator, to specifically identify the range of knowledge needed to support that professional practice. The student then takes on the task of self-directed learning, one of the hallmarks of the PBL process. Productivity is maximised during the times when actual patient or client contact is not possible, such as time of day, availability of suitable patients for student contact, or during times when the mentor has to attend to other duties. In these ways PBL can reduce students’ dependence on their educators while enhancing student sense of autonomy, and control over their own learning.

PBL can create a community of practice based on workplace learning, to develop fieldwork/clinical reasoning, to embed theory into practice and to raise students’ teamwork, collaboration skills and values. Not only the students benefit; the whole workforce can gain through workplace PBL, through more explicit recognition of, and discussion of, the implicit knowledge, and in regard to the scrutiny of evidence on which the current practice is based. Students seek and evaluate the knowledge needed to practice in that setting, using information technology techniques learnt on campus, which can then be shared within the multi-professional teams. In this way PBL actively supports the development of a learning community within health and social care practice (and other) settings.

PBL can enhance the quality of mentoring sessions through specific discussion of what has yet to be been learnt. Its flexibility fosters 1:1, 1:2, bigger groups, and inter-professional learning (Martin et al. 2004). Practice-based PBL is designed to augment student
independence, freeing educators of needing to ‘cover’ lots of material. PBL can help practitioners and students analyse, access and increase the complex implicit multi-subject knowledge on which practice depends.

Key messages

- Problem-based learning and practice-based learning share intentions: to develop students’ professional capacities through learning in meaningful, real-world contexts. Both are supported by learner-centred, active learning philosophies.
- PBL was developed by practitioners to make university learning more like practice contexts. There is potential now to make PBL a more common way to structure learning in practice settings.
- PBL has a structure that does not require major changes in practice-placement organisation, but its use can support the integration of theoretical and practical learning during placements.
- There is the potential to make implicit, expert knowledge more explicit and accessible for students during placements.

References

Requirements of the University of Brighton for the Degree of Doctor of Philosophy. Brighton: University of Brighton.

Problem-Based Learning (PBL) is a teaching method in which complex real-world problems are used as the vehicle to promote student learning of concepts and principles as opposed to direct presentation of facts and concepts. In addition to course content, PBL can promote the development of critical thinking skills, problem-solving abilities, and communication skills. It can also provide opportunities for working in groups, finding and evaluating research materials, and life-long learning (Duch et al, 2001). PBL can be incorporated into any learning situation. In the strictest definition of PBL, Problem-based learning (PBL) is a learner-centered teaching method where learners collaborate in team problem solving and share what they learned through their experiences. The motivation of learning in PBL comes from the significant involvement of learners in the problem situation. In this manner, learners better understand the results from their own practice in simulation. After a few classes, with all teams practicing through the end of year three, the lecturer will allow every team to visit other teams to observe and exchange their practical experiences. The lecturer may guide learners to observe why different teams, starting with similar ultimate goals and resources, can come up with different consequences at the end of year three. Explain Problem-Based Learning to students: its rationale, daily instruction, class expectations, grading. Serve as a model and resource to the PBL process; work in-tandem through the first problem. Help students secure various resources when needed. Supply ample class time for collaborative group work. Give feedback to each group after they share via the established format; critique the solution in quality and thoroughness. Reinforce to the students that the prior thinking and reasoning process in addition to the solution are important as well. Teacher’s Role in PBL. See also: Flipped teaching.