Epilepsy affects some 120,000 to 200,000 Australians. It is defined as a disorder with recurrent unprovoked seizures, but 4%–5% of the population may experience at least one seizure at some point in their lives. About half the people who develop epilepsy present in the first two decades of life. A second peak occurs in people older than 60 years.

Pathophysiology and clinical genetics

For 25 years, the classification of epilepsy syndromes has been embedded in the seizure type (partial or generalised onset) and the presence or absence of an underlying brain disorder (symptomatic or idiopathic), along with acceptance that there is a genetic basis with presence or absence of an underlying brain disorder (symptomatic or symptomatic or idiopathic). Along with that, there is a genetic basis with presence or absence of an underlying brain disorder (symptomatic or idiopathic). Indeed, in the past decade alone, examination of large pedigrees with multiple affected members has led to the discovery of several epilepsy genes. These gene defects most commonly disrupt the function of voltage-gated or neurotransmitter-gated ion channels, producing alterations in neuronal excitation within brain networks.

These discoveries have enhanced our understanding of seizure pathophysiology, but they have also begun to cast doubt on the current classification of the epilepsies. The distinctions between partial and generalised and between idiopathic and symptomatic are difficult to support when individuals sharing gene defects present with very different epilepsies. Despite this, the known epilepsy genes do not yet explain the most common epilepsies, where gene combinations interacting with environmental or epigenetic factors are expected to provide the answers.

Neuroimaging

There have been tremendous advances in neuroimaging technology. Magnetic resonance imaging (MRI) can demonstrate a variety of cerebral pathologies not reliably found with computed tomography (CT). These include hippocampal atrophy in mesial temporal lobe epilepsy, focal and diffuse malformations of cortical development, and vascular malformations and focal encephalomalacia. A CT brain scan is no longer an adequate investigation for epilepsy.

The ability to measure volumes of specific brain structures and quantify signal change has opened new areas of neuroscience research in humans with epilepsy. Cross-sectional and, more recently, longitudinal studies of regional brain volumes have provided evidence of progressive brain damage with intractable focal seizures. Functional neuroimaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) are valuable in assessment for epilepsy surgery, but have contributed little to our understanding of the aetiology of epilepsy. The development of new PET and SPECT ligands and MRI spectroscopy holds the promise of advances using in vivo neurochemistry.

Treatment and prognosis

With therapy, 60%–70% of people with epilepsy have a good prognosis with complete control of seizures on the first medication tried. In the past 10–15 years we have seen the introduction of lamotrigine, vigabatrin, gabapentin, tiagabine, topiramate oxcarbazepine and levetiracetam to the therapeutic armoury. These new antiepileptic drugs (AEDs) provide a greater range of options and differing side-effect profiles than existed with the older array of AEDs (barbiturates, phenytoin, carbamazepine and valproate). However, 20%–30% of patients will not respond completely to medication and there has been no major change in the proportion of children and adults whose seizures remain refractory to medication — even with the release of these new AEDs.

There has been a growing awareness of the futility of years of different AED trials in individuals and AED polytherapy. The failure of two well-supervised medication trials in partial epilepsy should alert the physician of the need to consider options such as epilepsy surgery. A randomised, controlled trial of surgery for temporal-lobe epilepsy has shown 58% of the surgical candidates were seizure-free at one year, compared with 8% of medically treated patients. Surgery should not be seen as the last resort, but as a complement to medical treatment in refractory cases.

Comorbidity of epilepsy

Doctors have become very adept at counting seizures to determine the success of interventions. In the past decade, attempts have been made to assess the impact of epilepsy and its treatment upon a person’s quality of life. We are becoming more aware of the effects of the older AEDs on endocrine function and their teratogenic potential. Long-term AED use is associated with osteopenia, and vitamin D and calcium supplements are appropriate.

More than 30% of patients with epilepsy may suffer depression. The depression is not simply the result of a chronic medical illness; it seems that the two disorders may share a common pathological substrate. Recognition and treatment of depression is important to the success of the treatment of the epilepsy itself.

The future

In the next decade or so, we can expect that genetic testing for particular epilepsies will complement and perhaps lessen our current dependence on clinical profiles and electroencephalography. It is conceivable such testing may aid us in selecting the most appropriate AED and predicting hypersensitivity side effects of AEDs. Currently, AEDs are administered to control seizures or the clinical expression of epilepsy, but we have no means to intervene to prevent epileptogenesis. Advances in our knowledge will certainly occur in the next decade. But without a greater understanding of epilepsy and seizures in the community, we will not lessen the stigma that still surrounds the disorder in schools and the work place. Epilepsy is a common disorder and deserves attention in public education programs.

Andrew F Bleasel
Director, Epilepsy Unit, Department of Neurology
Westmead Hospital, Sydney, NSW
ableasel@usyd.edu.au

Web-based peer review now standard for the MJA

On 1 July 2005, the MJA began using an online manuscript submission and peer review system called Editorial Manager. Provided by Aries Systems in the US, Editorial Manager is used by many journals throughout the world (including Australian Health Review, American Heart Journal, Annals of Emergency Medicine, and Cell). Indeed, many MJA authors and reviewers have already used Editorial Manager or a similar system.

Editorial Manager records manuscript submission and peer review in a database accessible via the world wide web. This administrative technique is very efficient. Authors enter their submissions directly into the database, receiving instant confirmation that their work has been received. Using Editorial Manager, authors are less likely to omit required information from their submission, and this reduces delays. Editorial Manager streamlines the communication between editors and potential reviewers, and makes it easy and quick for reviewers to receive a copy of the manuscript. The same streamlined method of communication is used to submit reviews, request manuscript revisions, and receive a final article. Journals using Editorial Manager commonly report that the administrative work and time taken to reach a decision on manuscripts are greatly reduced, and the number of manuscripts submitted rises.

Editors, authors and reviewers can log in at any time to check the status of their manuscripts. Because Editorial Manager is a web-based system, it is available wherever and whenever there is an internet connection, not just in the office. This accessibility also makes it easier for authors and reviewers overseas to contribute to the MJA.

So, we are expecting Editorial Manager to bring many benefits — benefits that should ultimately be expressed in better articles published more quickly in the MJA. We are also nervously prepared for the potential downside. New computer systems never appeal to everybody. The website provides plenty of written instructions, but we are also ready to spend time on the phone with new users answering their questions. We encourage all users of the system to give us feedback to guide future development of the system. And, although we are encouraging all authors to use Editorial Manager, no author will be discriminated against for not using the system. You can still post us a handwritten essay, if that is your modus operandi, and the editors (some with a thrill of nostalgic pleasure) will respond in like style. We do feel, however, that most authors will be much better served by the new system, and strongly urge them to take it up.

Craig M Bingham
Communications Development Manager
Christine Hooper
Editorial Assistant
Kerrie Harding
Editorial Administrator
The Medical Journal of Australia

How to submit a manuscript using Editorial Manager

Prepare your submission
To submit your manuscript online, you will need:
1. An electronic manuscript file that contains no identifying information (no author names or addresses, no acknowledgements).
3. Details of your co-authors: name, qualifications, position, institution, email address.
4. A disclosure statement completed for all authors.
5. High-resolution copies of any figures or photographs in separate files (if your manuscript is illustrated).
6. A covering letter in support of your submission (not required for Letters to the Editor, Book Reviews or Obituaries) saved in a separate electronic file.

Register with Editorial Manager
Everybody needs a username and password to log in to the MJA’s Editorial Manager site. If you haven’t used Editorial Manager with the MJA before, you will need to register first. Go to <www.editorialmanager.com/mja/>, click on “Register”, and follow the steps. We have registered all MJA reviewers already. If you are a reviewer, you should have received your username and password in an email.

Submit your article
Go to <www.editorialmanager.com/mja/> and click on “Submit a manuscript”. There are several steps to making a submission. Each time you complete a step, the system saves your work. If your session is interrupted for any reason, you can come back and complete your submission at a later time.

Problems?
Call Kerrie Harding or Christine Hooper in the editorial office: +61 2 9562 6666.

No internet access?
Send your submission by post. We would appreciate receiving the manuscript on a disk as well as on paper, if that is possible.

New Gene Therapy for Epilepsy Provides on-Demand Release of Endogenous Substance. Oct. 30, 2019 — Scientists have developed a new therapeutic concept for the treatment of temporal lobe epilepsy. It represents a gene therapy capable of suppressing seizures at their site of origin on demand. Having ...Â 1, 2019 — In some forms of epilepsy, the function of certain "brake cells" in the brain is presumed to be disrupted. This may be one of the reasons why the electrical malfunction is able to cause seizures.

Cancer Tumors Form Surprising Connections With Healthy Brain Cells. Scientists Solve Century-Old Neuroscience Mystery; Answers May Lead to Epilepsy Treatment. Wednesday, November 7, 2018. Compound Derived from Marijuana May Benefit Children With Epilepsy. For years, Albert Jean fought a losing battle against epilepsy. Because of frequent uncontrollable seizures, the Reading (Mass.) youngster couldn't ride a bike, swim, or cross the street. In junior high school, a teacher had to walk him to and from classes. Cyberonics, which on July 16 received Food & Drug Administration approval to market the product in the U.S., is about to feel like an absolutely different company. While the vagus nerve stimulator—as the device is called—is not a cure for epilepsy, it significantly reduces the number and severity of seizures. That can make a difference in the activity, self-confidence, and overall well-being of those who suffer from the neurological disorder.

Epileptic villains and outsiders. Nineteenth-century Western literature has multiple representations of seizures and epilepsy, which is perhaps unsurprising given the growing medical understanding of the condition at the time. Later in the book, epilepsy is identified as the cause of both his appearance and his wickedness: "You... in whom all evil passions, vice, and profligacy festered, till they found a vent in a hideous disease which has made your face an index even to your mind." Epilepsy is thus constructed as profoundly dangerous, a marker of criminality, immorality and villainy. At the beginning of the 20th century neurologists at the Salpêtrière Hospital in Paris and the Craig Epileptic Colony in New York were among the first to use film to capture the body during a seizure. Epileptic Seizures. When a seizure occurs in someone with epilepsy, there is a temporary loss of control that is often, but not always, accompanied by convulsions, unconsciousness or both. Neocortical temporal lobe epilepsy occurs in the outer portion of the temporal lobe, and differs from the other types of epilepsy; this is because there is often no clearly defined area from which the seizure originates. The cause can include, lesions like tumours and vascular malformation, traumatic brain injuries or infections. This is very educational. Both the triggers and the types of seizures are new to me. Thank you for the information. Voted up.