Table of Contents

Foreword .. iii
Preface ... v

Chapter 1. Introduction ... 1
 What this book is about 1
 How this book is organized 2
 In practice .. 3

Chapter 2. Precipitation ... 5
 With inorganic salts. 5
 Mechanism .. 5
 Attributes ... 8
 Limitations ... 9
 Method development 13
 With polyethylene glycol 15
 Mechanism .. 15
 Attributes ... 16
 Limitations ... 17
 Method development 18
 By electrolyte depletion 19
 Mechanism ... 19
 Attributes ... 19
 Limitations .. 20
 With octanoic acid 20
 Mechanism .. 20
 Attributes ... 21
 Limitations .. 22
 Method development 24
 With ethacridine 24
 Mechanism ... 24
 Attributes ... 24
 Limitations .. 26
 Method development 26
 In perspective .. 27
 Recommended reading 28
 References .. 28

Chapter 3. Size Exclusion Chromatography 33
 Mechanism ... 33
 Attributes ... 38
 Limitations ... 42
 Method development 50
 In perspective ... 53
 Recommended reading 54
 References .. 54
Kelley B (2007) Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol Prog 23(5):995–1008 PubMed Google Scholar. Low D, O’Leary R, Pujar NS (2007) Future of antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci 848(1):48–63 PubMed CrossRef Google Scholar. Mehta A, Tse ML, Fogle J, Len A, Shrestha R, Fontes N, Lebreton B, Wolk B, van Reis R (2008) Purifying therapeutic monoclonal antibodies. Chem Eng Progr 104(5):S14–S20 Google Scholar. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies Antibodies for therapeutic use are being continuously approved and their demand has been steadily growing. As known, the golden standard for monoclonal antibody purification is Protein A affinity chromatography a technology that has gained high interest because of its great performance and capabilities. The main concerns are the elevated resins costs and their limited lifetime compared to other resins (e.g. ion exchange chromatography). Monoclonal antibodies Monoclonal antibodies (MAbs) are highly specific antibodies produced from hybridoma cells. These hybridoma cells are created by isolating plasma cell precursors, which are then fused with immortal cells. The hybridoma cells can be single-cell cloned and expanded as individual clones that secrete only one antibody type, a monoclonal antibody. The high specificity of a monoclonal antibody is a significant advantage, particularly in therapeutic applications. Monoclonal antibodies are frequently used in the form of tissue culture supernatants harvested from the hybridoma cult Monoclonal Anti-HA antibody produced in mouse clone HA-7, purified from hybridoma cell culture. Catalog Number H3663. Analysis and affinity purification of the HA-tagged protein and associated bound proteins. Insertion of the HA epitope in different regions of a cellular protein followed by examination of the immunoreactivity of the epitope in intact and permeabilized cells is useful for studying the cellular expression levels, topology and functional activity of the tagged protein. Monoclonal antibodies reacting specifically with HA may be useful in various immunotechniques, to identify the expression of an HA fusion protein in situ and by immunoblotting, in bacteria, bacterial lysates of cells and tissue.