## Contents

List of models xxxv  
List of examples xlvii  
Preface xlix  
Part I: Fundamentals of Bayesian Inference 1  

### 1 Background 3  
1.1 Overview 3  
1.2 General notation for statistical inference 4  
1.3 Bayesian inference 6  
1.4 Example: inference about a genetic probability 9  
1.5 Probability as a measure of uncertainty 11  
1.6 Example of probability assignment: football point spreads 14  
1.7 Example of probability assignment: estimating the accuracy of record linkage 17  
1.8 Some useful results from probability theory 22  
1.9 Summarizing inferences by simulation 25  
1.10 Computation and software 27  
1.11 Bibliographic note 27  
1.12 Exercises 29  

### 2 Single-parameter models 33  
2.1 Estimating a probability from binomial data 33  
2.2 Posterior distribution as compromise between data and prior information 36  
2.3 Summarizing posterior inference 37  
2.4 Informative prior distributions 39  
2.5 Example: estimating the probability of a female birth given placenta previa 43  
2.6 Estimating the mean of a normal distribution with known variance 46  
2.7 Other standard single-parameter models 49  
2.8 Example: informative prior distribution and multilevel structure for estimating cancer rates 55
CONTENTS

2.9 Noninformative prior distributions 61
2.10 Bibliographic note 65
2.11 Exercises 67

3 Introduction to multiparameter models 73
3.1 Averaging over ‘nuisance parameters’ 73
3.2 Normal data with a noninformative prior distribution 74
3.3 Normal data with a conjugate prior distribution 78
3.4 Normal data with a semi-conjugate prior distribution 80
3.5 The multinomial model 83
3.6 The multivariate normal model 85
3.7 Example: analysis of a bioassay experiment 88
3.8 Summary of elementary modeling and computation 93
3.9 Bibliographic note 94
3.10 Exercises 95

4 Large-sample inference and frequency properties of Bayesian inference 101
4.1 Normal approximations to the posterior distribution 101
4.2 Large-sample theory 106
4.3 Counterexamples to the theorems 108
4.4 Frequency evaluations of Bayesian inferences 111
4.5 Bibliographic note 113
4.6 Exercises 113

Part II: Fundamentals of Bayesian Data Analysis 115

5 Hierarchical models 117
5.1 Constructing a parameterized prior distribution 118
5.2 Exchangeability and setting up hierarchical models 121
5.3 Computation with hierarchical models 125
5.4 Estimating an exchangeable set of parameters from a normal model 131
5.5 Example: combining information from educational testing experiments in eight schools 138
5.6 Hierarchical modeling applied to a meta-analysis 145
5.7 Bibliographic note 150
5.8 Exercises 152

6 Model checking and improvement 157
6.1 The place of model checking in applied Bayesian statistics 157
6.2 Do the inferences from the model make sense? 158
6.3 Is the model consistent with data? Posterior predictive checking 159
6.4 Graphical posterior predictive checks 165
CONTENTS

6.5 Numerical posterior predictive checks 172
6.6 Model expansion 177
6.7 Model comparison 179
6.8 Model checking for the educational testing example 186
6.9 Bibliographic note 190
6.10 Exercises 192

7 Modeling accounting for data collection 197
7.1 Introduction 197
7.2 Formal models for data collection 200
7.3 Ignorability 203
7.4 Sample surveys 207
7.5 Designed experiments 218
7.6 Sensitivity and the role of randomization 223
7.7 Observational studies 226
7.8 Censoring and truncation 231
7.9 Discussion 236
7.10 Bibliographic note 237
7.11 Exercises 239

8 Connections and challenges 247
8.1 Bayesian interpretations of other statistical methods 247
8.2 Challenges in Bayesian data analysis 252
8.3 Bibliographic note 255
8.4 Exercises 255

9 General advice 259
9.1 Setting up probability models 259
9.2 Posterior inference 264
9.3 Model evaluation 265
9.4 Summary 271
9.5 Bibliographic note 271

Part III: Advanced Computation 273

10 Overview of computation 275
10.1 Crude estimation by ignoring some information 276
10.2 Use of posterior simulations in Bayesian data analysis 276
10.3 Practical issues 278
10.4 Exercises 282

11 Posterior simulation 283
11.1 Direct simulation 283
11.2 Markov chain simulation 285
11.3 The Gibbs sampler 287
## CONTENTS

### 15 Hierarchical linear models  
15.1 Regression coefficients exchangeable in batches  
15.2 Example: forecasting U.S. Presidential elections  
15.3 General notation for hierarchical linear models  
15.4 Computation  
15.5 Hierarchical modeling as an alternative to selecting predictors  
15.6 Analysis of variance  
15.7 Bibliographic note  
15.8 Exercises  

### 16 Generalized linear models  
16.1 Introduction  
16.2 Standard generalized linear model likelihoods  
16.3 Setting up and interpreting generalized linear models  
16.4 Computation  
16.5 Example: hierarchical Poisson regression for police stops  
16.6 Example: hierarchical logistic regression for political opinions  
16.7 Models for multinomial responses  
16.8 Loglinear models for multivariate discrete data  
16.9 Bibliographic note  
16.10 Exercises  

### 17 Models for robust inference  
17.1 Introduction  
17.2 Overdispersed versions of standard probability models  
17.3 Posterior inference and computation  
17.4 Robust inference and sensitivity analysis for the educational testing example  
17.5 Robust regression using Student-t errors  
17.6 Bibliographic note  
17.7 Exercises  

## Part V: Specific Models and Problems  

### 18 Mixture models  
18.1 Introduction  
18.2 Setting up mixture models  
18.3 Computation  
18.4 Example: reaction times and schizophrenia  
18.5 Bibliographic note  

### 19 Multivariate models  
19.1 Linear regression with multiple outcomes  
19.2 Prior distributions for covariance matrices  
19.3 Hierarchical multivariate models
# CONTENTS

19.4 Multivariate models for nonnormal data 488  
19.5 Time series and spatial models 491  
19.6 Bibliographic note 493  
19.7 Exercises 494  

20 Nonlinear models 497  
20.1 Introduction 497  
20.2 Example: serial dilution assay 498  
20.3 Example: population toxicokinetics 504  
20.4 Bibliographic note 514  
20.5 Exercises 515  

21 Models for missing data 517  
21.1 Notation 517  
21.2 Multiple imputation 519  
21.3 Missing data in the multivariate normal and \( t \) models 523  
21.4 Example: multiple imputation for a series of polls 526  
21.5 Missing values with counted data 533  
21.6 Example: an opinion poll in Slovenia 534  
21.7 Bibliographic note 539  
21.8 Exercises 540  

22 Decision analysis 541  
22.1 Bayesian decision theory in different contexts 542  
22.2 Using regression predictions: incentives for telephone surveys 544  
22.3 Multistage decision making: medical screening 552  
22.4 Decision analysis using a hierarchical model: home radon measurement and remediation 555  
22.5 Personal vs. institutional decision analysis 567  
22.6 Bibliographic note 568  
22.7 Exercises 569  

Appendixes 571  

A Standard probability distributions 573  
A.1 Introduction 573  
A.2 Continuous distributions 573  
A.3 Discrete distributions 582  
A.4 Bibliographic note 584  

B Outline of proofs of asymptotic theorems 585  
B.1 Bibliographic note 589  

C Example of computation in R and Bugs 591  
C.1 Getting started with R and Bugs 591
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2 Fitting a hierarchical model in Bugs</td>
<td>592</td>
</tr>
<tr>
<td>C.3 Options in the Bugs implementation</td>
<td>596</td>
</tr>
<tr>
<td>C.4 Fitting a hierarchical model in R</td>
<td>600</td>
</tr>
<tr>
<td>C.5 Further comments on computation</td>
<td>607</td>
</tr>
<tr>
<td>C.6 Bibliographic note</td>
<td>608</td>
</tr>
</tbody>
</table>

References 611

Author index 647

Subject index 655
List of models

<table>
<thead>
<tr>
<th>Model</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete conditional probabilities</td>
<td>9, 552</td>
</tr>
<tr>
<td>Binomial</td>
<td>33, 43, 97</td>
</tr>
<tr>
<td>Normal</td>
<td>46, 74</td>
</tr>
<tr>
<td>Poisson</td>
<td>51, 55, 70, 441</td>
</tr>
<tr>
<td>Exponential</td>
<td>55, 71</td>
</tr>
<tr>
<td>Discrete uniform</td>
<td>68</td>
</tr>
<tr>
<td>Cauchy</td>
<td>69</td>
</tr>
<tr>
<td>Multinomial</td>
<td>83, 533</td>
</tr>
<tr>
<td>Logistic regression</td>
<td>88, 423</td>
</tr>
<tr>
<td>Rounding</td>
<td>96</td>
</tr>
<tr>
<td>Poisson regression</td>
<td>99, 425</td>
</tr>
<tr>
<td>Normal approximation</td>
<td>101</td>
</tr>
<tr>
<td>Hierarchical beta/binomial</td>
<td>118</td>
</tr>
<tr>
<td>Simple random sampling</td>
<td>122, 207</td>
</tr>
<tr>
<td>Hierarchical normal/normal</td>
<td>131</td>
</tr>
<tr>
<td>Hierarchical Poisson/gamma</td>
<td>155</td>
</tr>
<tr>
<td>Finite mixture</td>
<td>172, 463</td>
</tr>
<tr>
<td>Hierarchical logistic regression</td>
<td>172, 428</td>
</tr>
<tr>
<td>Power-transformed normal</td>
<td>195, 265</td>
</tr>
<tr>
<td>Student-t</td>
<td>194, 446</td>
</tr>
<tr>
<td>Stratified sampling</td>
<td>209</td>
</tr>
<tr>
<td>Cluster sampling</td>
<td>214</td>
</tr>
<tr>
<td>Completely randomized experiments</td>
<td>218</td>
</tr>
<tr>
<td>Randomized block and Latin square experiments</td>
<td>220, 240</td>
</tr>
<tr>
<td>Model</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Truncation and censoring</td>
<td>231</td>
</tr>
<tr>
<td>Capture-recapture</td>
<td>242</td>
</tr>
<tr>
<td>Linear regression</td>
<td>353</td>
</tr>
<tr>
<td>Linear regression with unequal variances</td>
<td>375</td>
</tr>
<tr>
<td>Straight-line fitting with errors in $x$ and $y$</td>
<td>386</td>
</tr>
<tr>
<td>Hierarchical linear regression</td>
<td>389, 544, 555</td>
</tr>
<tr>
<td>Hierarchical model for factorial data</td>
<td>409</td>
</tr>
<tr>
<td>Generalized linear models</td>
<td>415</td>
</tr>
<tr>
<td>Probit regression</td>
<td>417</td>
</tr>
<tr>
<td>Hierarchical overdispersed Poisson regression</td>
<td>425</td>
</tr>
<tr>
<td>Multinomial for paired comparisons</td>
<td>431</td>
</tr>
<tr>
<td>Loglinear for contingency tables</td>
<td>433</td>
</tr>
<tr>
<td>Negative binomial</td>
<td>446</td>
</tr>
<tr>
<td>Beta-binomial</td>
<td>446</td>
</tr>
<tr>
<td>Student-$t$ regression</td>
<td>455</td>
</tr>
<tr>
<td>Multivariate regression</td>
<td>481, 526</td>
</tr>
<tr>
<td>Hierarchical multivariate regression</td>
<td>486</td>
</tr>
<tr>
<td>Nonlinear regression</td>
<td>498, 515</td>
</tr>
<tr>
<td>Differential equation model</td>
<td>504</td>
</tr>
<tr>
<td>Hierarchical regression with unequal variances</td>
<td>546</td>
</tr>
</tbody>
</table>
List of examples

Simple examples from genetics 9, 30
Football scores and point spreads 14, 51, 82, 196
Calibrating match rates in record linkage 17
Probability that an election is tied 30
Probability of a female birth 33, 43
Idealized example of estimating the rate of a rare disease 53
Mapping cancer rates 55
Airline fatalities 70, 99
Estimating the speed of light 77, 160
Pre-election polling 83, 95, 210
A bioassay experiment 88, 104
Bicycle traffic 98
71 experiments on rat tumors 118, 127
Divorce rates 122
SAT coaching experiments in 8 schools 138, 186, 451
Meta-analysis of heart attack studies 145, 488
Forecasting U.S. elections 158, 392
Testing models from psychological studies 166, 168
Testing a discrete-data model of pain relief scores 170
Adolescent smoking 172
Radon measurement and remediation decisions 195, 555
Survey of schoolchildren using cluster sampling 214
Survey of Alcoholics Anonymous groups 216
Agricultural experiment with a Latin square design 220
Nonrandomized experiment on 50 cows 222, 386
Hypothetical example of lack of balance in an observational study 227
Vitamin A experiment with noncompliance 229, 245
Adjusting for unequal probabilities in telephone polls 242
Population pharmacokinetics 260, 504
Idealized example of recoding census data 261
Estimating total population from a random sample 265
Unbalanced randomized experiment on blood coagulation 299, 299
Incumbency advantage in U.S. Congressional elections 359, 377
Body mass, surface area, and metabolic rate of dogs 387
Internet connection times 409
A three-factor chemical experiment 413
State-level public opinions estimated from national polls 428
World Cup chess 431
Survey on knowledge about cancer 437
Word frequencies 458
Reaction times and schizophrenia 468
Predicting business school grades 486
Serial dilution assays 498
Unasked questions in a series of opinion polls 526
Missing data in an opinion poll in Slovenia 534
Incentives in sample surveys 544
Medical decision making 552
Preface

This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of Bayesian methods in applied statistics for general users of and researchers in applied statistics. Although introductory in its early sections, the book is definitely not elementary in the sense of a first text in statistics. The mathematics used in our book is basic probability and statistics, elementary calculus, and linear algebra. A review of probability notation is given in Chapter 1 along with a more detailed list of topics assumed to have been studied. The practical orientation of the book means that the reader’s previous experience in probability, statistics, and linear algebra should ideally have included strong computational components.

To write an introductory text alone would leave many readers with only a taste of the conceptual elements but no guidance for venturing into genuine practical applications, beyond those where Bayesian methods agree essentially with standard non-Bayesian analyses. On the other hand, given the continuing scarcity of introductions to applied Bayesian statistics either in books or in statistical education, we feel it would be a mistake to present the advanced methods without first introducing the basic concepts from our data-analytic perspective. Furthermore, due to the nature of applied statistics, a text on current Bayesian methodology would be incomplete without a variety of worked examples drawn from real applications. To avoid cluttering the main narrative, there are bibliographic notes at the end of each chapter and references at the end of the book.

Examples of real statistical analyses are found throughout the book, and we hope thereby to give a genuine applied flavor to the entire development. Indeed, given the conceptual simplicity of the Bayesian approach, it is only in the intricacy of specific applications that novelty arises. Non-Bayesian approaches to inference have dominated statistical theory and practice for most of the past century, but the last two decades or so have seen a reemergence of the Bayesian approach. This has been driven more by the availability of new computational techniques than by what many would see as the philosophical and logical advantages of Bayesian thinking.

We hope that the publication of this book will enhance the spread of ideas that are currently trickling through the scientific literature. The models and methods developed recently in this field have yet to reach their largest possible audience, partly because the results are scattered in various journals and
Proceedings volumes. We hope that this book will help a new generation of statisticians and users of statistics to solve complicated problems with greater understanding.

*Progress in Bayesian data analysis*

Bayesian methods have matured and improved in several ways in the eight years since the first edition of this book appeared.

- Successful applications of Bayesian data analysis have appeared in many different fields, including business, computer science, economics, educational research, environmental science, epidemiology, genetics, geography, imaging, law, medicine, political science, psychometrics, public policy, sociology, and sports. In the social sciences, Bayesian ideas often appear in the context of multilevel modeling.
- New computational methods generalizing the Gibbs sampler and Metropolis algorithm, including some methods from the physics literature, have been adapted to statistical problems. Along with improvements in computing speed, these have made it possible to compute Bayesian inference for more complicated models on larger datasets.
- In parallel with the theoretical improvements in computation, the software package **Bugs** has allowed nonexperts in statistics to fit complex Bayesian models with minimal programming. Hands-on experience has convinced many applied researchers of the benefits of the Bayesian approach.
- There has been much work on model checking and comparison, from many perspectives, including predictive checking, cross-validation, Bayes factors, model averaging, and estimates of predictive errors and model complexity.
- In sample surveys and elsewhere, multiple imputation has become a standard method of capturing uncertainty about missing data. This has motivated ongoing work into more flexible models for multivariate distributions.
- There has been continuing progress by various researchers in combining Bayesian inference with existing statistical approaches from other fields, such as instrumental variables analysis in economics, and with nonparametric methods such as classification trees, splines, and wavelets.
- In general, work in Bayesian statistics now focuses on applications, computations, and models. Philosophical debates, abstract optimality criteria, and asymptotic analyses are fading to the background. It is now possible to do serious applied work in Bayesian inference without the need to debate foundational principles of inference.

*Changes for the second edition*

The major changes for the second edition of this book are:

- Reorganization and expansion of Chapters 6 and 7 on model checking and data collection;
- Revision of Part III on computation;
New chapters on nonlinear models and decision analysis;

An appendix illustrating computation using the statistical packages R and Bugs;

New applied examples throughout, including:
- Census record linkage, a data-based assignment of probability distributions (Section 1.7),
- Cancer mapping, demonstrating the role of the prior distribution on data with different sample sizes (Section 2.8),
- Psychological measurement data and the use of graphics in model checking (Section 6.4),
- Survey of adolescent smoking, to illustrate numerical predictive checks (Section 6.5),
- Two surveys using cluster sampling (Section 7.4),
- Experiment of vitamin A intake, with noncompliance to assigned treatment (Section 7.7),
- Factorial data on internet connect times, summarized using the analysis of variance (Section 15.6),
- Police stops, modeled with hierarchical Poisson regressions (Section 16.5),
- State-level opinions from national polls, using hierarchical modeling and poststratification (Section 16.6),
- Serial dilution assays, as an example of a nonlinear model (Section 20.2),
- Data from a toxicology experiment, analyzed with a hierarchical nonlinear model (Section 20.3),
- Pre-election polls, with multiple imputation of missing data (Section 21.2),
- Incentives for telephone surveys, a meta-analysis for a decision problem (Section 22.2),
- Medical screening, an example of a decision analysis (Section 22.3),
- Home radon measurement and remediation decisions, analyzed using a hierarchical model (Section 22.4).

We have added these examples because our readers have told us that one thing they liked about the book was the presentation of realistic problem-solving experiences. As in the first edition, we have included many applications from our own research because we know enough about these examples to convey the specific challenges that arose in moving from substantive goals to probability modeling and, eventually, to substantive conclusions. Also as before, some of the examples are presented schematically and others in more detail.

We changed the computation sections out of recognition that our earlier recommendations were too rigid: Bayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution, and the best approach is not always clear in advance. Thus we have
moved to a more pluralistic presentation—we give advice about performing computations from many perspectives, including approximate computation, mode-finding, and simulations, while making clear, especially in the discussion of individual models in the later parts of the book, that it is important to be aware of the different ways of implementing any given iterative simulation computation. We briefly discuss some recent ideas in Bayesian computation but devote most of Part III to the practical issues of implementing the Gibbs sampler and the Metropolis algorithm. Compared to the first edition, we de-emphasize approximations based on the normal distribution and the posterior mode, treating these now almost entirely as techniques for obtaining starting points for iterative simulations.

Contents

Part I introduces the fundamental Bayesian principle of treating all unknowns as random variables and presents basic concepts, standard probability models, and some applied examples. In Chapters 1 and 2, simple familiar models using the normal, binomial, and Poisson distributions are used to establish this introductory material, as well as to illustrate concepts such as conjugate and noninformative prior distributions, including an example of a nonconjugate model. Chapter 3 presents the Bayesian approach to multiparameter problems. Chapter 4 introduces large-sample asymptotic results that lead to normal approximations to posterior distributions.

Part II introduces more sophisticated concepts in Bayesian modeling and model checking. Chapter 5 introduces hierarchical models, which reveal the full power and conceptual simplicity of the Bayesian approach for practical problems. We illustrate issues of model construction and computation with a relatively complete Bayesian analysis of an educational experiment and of a meta-analysis of a set of medical studies. Chapter 6 discusses the key practical concerns of model checking, sensitivity analysis, and model comparison, illustrating with several examples. Chapter 7 discusses how Bayesian data analysis is influenced by data collection, including the topics of ignorable and nonignorable data collection rules in sample surveys and designed experiments, and specifically the topic of randomization, which is presented as a device for increasing the robustness of posterior inferences. This a difficult chapter, because it presents important ideas that will be unfamiliar to many readers. Chapter 8 discusses connections to non-Bayesian statistical methods, emphasizing common points in practical applications and current challenges in implementing Bayesian data analysis. Chapter 9 summarizes some of the key ideas of Bayesian modeling, inference, and model checking, illustrating issues with some relatively simple examples that highlight potential pitfalls in trying to fit models automatically.

Part III covers Bayesian computation, which can be viewed as a highly specialized branch of numerical analysis: given a posterior distribution function (possibly implicitely defined), how does one extract summaries such as quantiles, moments, and modes, and draw random samples of values? We em-
phasize iterative methods—the Gibbs sampler and Metropolis algorithm—for drawing random samples from the posterior distribution.

Part IV discusses regression models, beginning with a Bayesian treatment of classical regression illustrated using an example from the study of elections that has both causal and predictive aspects. The subsequent chapters give general principles and examples of hierarchical linear models, generalized linear models, and robust models.

Part V presents a range of other Bayesian probability models in more detail, with examples of multivariate models, mixtures, and nonlinear models. We conclude with methods for missing data and decision analysis, two practical concerns that arise implicitly or explicitly in many statistical problems.

Throughout, we illustrate in examples the three steps of Bayesian statistics: (1) setting up a full probability model using substantive knowledge, (2) conditioning on observed data to form a posterior inference, and (3) evaluating the fit of the model to substantive knowledge and observed data.

Appendices provide a list of common distributions with their basic properties, a sketch of a proof of the consistency and limiting normality of Bayesian posterior distributions, and an extended example of Bayesian computation in the statistical packages Bugs and R.

Most chapters conclude with a set of exercises, including algebraic derivations, simple algebraic and numerical examples, explorations of theoretical topics covered only briefly in the text, computational exercises, and data analyses. The exercises in the later chapters tend to be more difficult; some are suitable for term projects.

One-semester or one-quarter course

This book began as lecture notes for a graduate course. Since then, we have attempted to create an advanced undergraduate text, a graduate text, and a reference work all in one, and so the instructor of any course based on this book must be selective in picking out material.

Chapters 1–6 should be suitable for a one-semester course in Bayesian statistics for advanced undergraduates, although these students might also be interested in the introduction to Markov chain simulation in Chapter 11.

Part I has many examples and algebraic derivations that will be useful for a lecture course for undergraduates but may be left to the graduate students to read at home (or conversely, the lectures can cover the examples and leave the theory for homework). The examples of Part II are crucial, however, since these ideas will be new to most graduate students as well. We see the first two chapters of Part III as essential for understanding modern Bayesian computation and the first three chapters of Part IV as basic to any graduate course because they take the student into the world of standard applied models; the remaining material in Parts III–V can be covered as time permits.

This book has been used as the text for one-semester and one-quarter courses for graduate students in statistics at many universities. We suggest the following syllabus for an intense fifteen-week course.
1. Setting up a probability model, Bayes' rule, posterior means and variances, binomial model, proportion of female births (Chapter 1, Sections 2.1–2.5).

2. Standard univariate models including the normal and Poisson models, cancer rate example, noninformative prior distributions (Sections 2.6–2.9).

3. Multiparameter models, normal with unknown mean and variance, the multivariate normal distribution, multinomial models, election polling, bioassay. Computation and simulation from arbitrary posterior distributions in two parameters (Chapter 3).

4. Inference from large samples and comparison to standard non-Bayesian methods (Chapter 4).

5. Hierarchical models, estimating population parameters from data, rat tumor rates, SAT coaching experiments, meta-analysis (Chapter 5).

6. Model checking, posterior predictive checking, sensitivity analysis, model comparison and expansion, checking the analysis of the SAT coaching experiments (Chapter 6).

7. Data collection—ignorability, surveys, experiments, observational studies, unintentional missing data (Chapter 7).

8. General advice, connections to other statistical methods, examples of potential pitfalls of Bayesian inference (Chapters 8 and 9).

9. Computation: overview, uses of simulations, Gibbs sampling (Chapter 10, Sections 11.1–11.3).

10. Markov chain simulation (Sections 11.4–11.10, Appendix C).

11. Normal linear regression from a Bayesian perspective, incumbency advantage in Congressional elections (Chapter 14).

12. Hierarchical linear models, selection of explanatory variables, forecasting Presidential elections (Chapter 15).

13. Generalized linear models, police stops example, opinion polls example (Chapter 16).

14. Final weeks: topics from remaining chapters (including advanced computational methods, robust inference, mixture models, multivariate models, nonlinear models, missing data, and decision analysis).

Computer sites and contact details

Additional materials, including the data used in the examples, solutions to many of the end-of-chapter exercises, and any errors found after the book goes to press, are posted at http://www.stat.columbia.edu/~gelman/. Please send any comments to us at gelman@stat.columbia.edu, sternh@uci.edu, jbcarlin@unimelb.edu.au, or rubin@stat.harvard.edu.
Acknowledgments

We thank Stephen Ansolabehere, Adriano Azevedo, Jarrett Barber, Tom Belin, Suzette Blanchard, Brad Carlin, Alicia Carriquiry, Samantha Cook, Victor De Oliveira, David Draper, John Emerson, Steve Fienberg, Yuri Goegebeur, Daniel Gianola, David Hammill, Chuanpu Hu, Zaiying Huang, Yoon-Sook Jeon, Shane Jensen, Jay Kadane, Jouni Kerman, Gary King, Lucien Le Cam, Rod Little, Tom Little, Chuanhai Liu, Xuecheng Liu, Peter McCullagh, Mary Sara McPeek, Xiao-Li Meng, Baback Moghaddam, Olivier Nimeskern, Ali Rahimi, Thomas Richardson, Scott Schmidler, Andrea Siegel, Sandip Sinharay, Elizabeth Stuart, Andrew Swift, Francis Tuerlinckx, Iven Van Mechelen, Rob Weiss, Alan Zaslavsky, several reviewers, many other colleagues, and the students in Statistics 238, 242A, and 260 at Berkeley, Statistics 36-724 at Carnegie Mellon, Statistics 320 at Chicago, Statistics 220 at Harvard, Statistics 544 at Iowa State, and Statistics 6102 at Columbia, for helpful discussions, comments, and corrections. We especially thank Phillip Price and Radford Neal for their thorough readings of different parts of this book. John Boscardin deserves special thanks for implementing many of the computations for Sections 5.5, 6.8, 15.2, and 17.4. We also thank Chad Heilig for help in preparing tables, lists, and indexes. The National Science Foundation provided financial support through a postdoctoral fellowship and grants SBR-9223637, 9708424, DMS-9404305, 9457824, 9796129, and SES-9987748, 0084368. The computations and figures were done using the S, S-Plus, R, and Bugs computer packages (see Appendix C).


Finally, we thank our spouses, Caroline, Nancy, Hara, and Kathryn, for their love and support during the writing and revision of this book.
Bayesian inference is the process of fitting a probability model to a set of data and summarizing the result by a probability distribution on the parameters of the model and on unobserved quantities such as predictions for new observations. In Chapters 1–3, we introduce several useful families of models and illustrate their application in the analysis of relatively simple data structures. Some mathematics arises in the analytical manipulation of the probability distributions, notably in transformation and integration in multiparameter problems. We differ somewhat from other introductions to Bayesian inference by emphasizing stochastic simulation, and the combination of mathematical analysis and simulation, as general methods for summarizing distributions. Chapter 4 outlines the fundamental connections between Bayesian inference, other approaches to statistical inference, and the normal distribution. The early chapters focus on simple examples to develop the basic ideas of Bayesian inference; examples in which the Bayesian approach makes a practical difference relative to more traditional approaches begin to appear in Chapter 3. The major practical advantages of the Bayesian approach appear in hierarchical models, as discussed in Chapter 5 and thereafter.
Bayesian Cost Effectiveness Analysis. Given the results of a Bayesian model (possibly based on MCMC) in the form of simulations from the posterior distributions of suitable variables of costs and clinical benefits for two or more interventions, produces a health economic evaluation. Compares one of the interventions (the “reference”) to the others (“comparators”). Exploratory Data Analysis with MATLAB, Second Edition (Chapman & Hall CRC Computer Science & Data. 499 Pages·2010·6.43 MB·1,364 Downloads·New! for download at http://pi-sigma.info Exploratory Data Analysis with MATLAB, Second Edition Algorithms and Theory of Computation Handbook, Second Edition, Volume 1: General Concepts and Techniques (Chapman & Hall/CRC Applied Algorithms and Data Structures series). Exploratory Data Analysis with MATLAB, Second Edition, Volume 2: Special Topics and Techniques (Chapman Statistical and Machine-Learning Data Mining, Third Edition: Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition. 691 Pages·2017·7.46 MB·27,314 Downloads·New! Their main challenge is model parameterization given surveillance data, a problem which often limits their practical usage. We offer a solution to this problem by developing a Bayesian methodology suitable to epidemiological models driven by network data. The greatest difficulty in obtaining a concentrated parameter posterior is the quality of surveillance data; disease measurements are often scarce and carry little information about the parameters. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book